Published by Todd Bush on June 12, 2025
Purdue University and Sandia National Laboratories have potentially uncovered a game-changing method for using clay to capture carbon dioxide (CO₂) directly from the air to help mitigate climate change.
Their work, which earned them a 2024 R&D 100 Award and has a patent application in progress, was recently published in The Journal of Physical Chemistry C.
Cliff Johnston, professor of agronomy in the College of Agriculture and Earth, Atmospheric, and Planetary Sciences in the College of Science at Purdue University, led the study, along with undergraduate student Riley Welsh and research scientists at Sandia National Laboratories, who are co-authors of the recent study.
>> In Other News: Zero Petroleum Announces Strategic Expansion: Seeking N. American Site for Next-Gen Synthetic Fuels Facility and R&D Hub
This research may expand the portfolio of absorbent materials for addressing one of the planet's most challenging problems. Clays could be an inexpensive, accessible and abundant resource for absorbing carbon dioxide from the air and a powerful tool in addressing climate change.
Johnston, his research team at Purdue University and the Sandia National Laboratories team have been digging into what makes clay minerals tick for more than 30 years.
"Clay minerals have an exceptionally high surface area," Johnston said. "One tablespoon of clay has approximately the same surface area as an American football field. Most of this surface area is found in the internal pores of the clay. Over decades of research, we have found that these internal pores have polar and nonpolar regions. Molecules like CO₂ prefer the nonpolar regions, whereas water vapor prefers the polar regions. By selecting certain types of clay and manipulating their ionic structure, we can optimize for materials that can uptake CO₂."
The team studies a group of clays called smectites, which have large internal surface areas and are some of the most common naturally occurring nanomaterials on the planet. Both their abundance and their size make smectites promising candidates for large-scale environmental solutions.
Johnston's team has a long history of exploring how smectites absorb toxic organic pollutants from water.
"Our prior work focused on absorption of toxic organic pollutants on clay minerals from aqueous solution, and we found that certain types of smectites have hydrophobic surfaces and can sorb significant levels of hydrophobic contaminants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, one of the most toxic organic compounds known," Johnston said. The main sources of dioxins are unintended byproducts of combustion and industrial manufacturing and are common contaminants found in Superfund sites.
Having laid a strong foundation, the team envisions advancing solutions to the urgent global challenge of carbon dioxide capture using widely available, affordable geosorbents.
In recent years, researchers worldwide have investigated clay-carbon dioxide interactions under extreme conditions, such as high temperatures and pressures, or through direct air capture using advanced materials like zeolites, mesoporous silica, metal-organic frameworks and metal-oxide-based adsorbents. For example, Climeworks' Orca facility in Iceland uses unique solid amine-based sorbents to capture carbon dioxide from the air. However, clay minerals have largely been overlooked as promising sorbents until now.
The researchers focused on a specific smectite called saponite. They examined how saponite handles carbon dioxide and water vapor competing for space in the clay's tiny internal pores. Unlike past studies that cranked up the heat to make clays absorb carbon dioxide, the researchers used humidity instead. They discovered that saponite exhibits a high affinity for carbon dioxide at low humidity levels, a finding they confirmed through advanced spectroscopic and gravimetric analysis.
This study is the first to report on the simultaneous absorption of carbon dioxide and water by a clay mineral at ambient concentrations of carbon dioxide, providing valuable insights into how these abundant resources can be harnessed for better carbon capture.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 📊 Carbon Capture's $77 Billion Surge Faces a Crossroads: Will the U.S. Lead or Fall Behind? 🌱 Exomad Green Breaks Ground on the World’s Largest Biochar Facility in Bolivia’s Guar...
Inside This Issue 🏝️ Pegasus Capital Advisors and Partanna Collaborate to Scale Carbon-Negative Cement for Coastal Resilience 🌾 Scaling Carbon Sequestration with Precision: How Charm Industrial Us...
Inside This Issue 🔥 Whitehouse, Schiff Introduce Bill to Reduce Wildfire Risk with Innovative Carbon Removal Solutions ⚡ Plug Power and Allied Green Expand Strategic Collaboration with New 2 GW El...
Turning Carbon Dioxide Into Fuel Just Got Easier, Thanks to Acid Bubbles
A team of researchers at Rice University have discovered a surprisingly simple method for vastly improving the stability of electrochemical devices that convert carbon dioxide into useful fuels and...
US Senate Should Ease Provisions for Clean-energy Tax Credits, Republican Senator Says
The U.S. Senate should make changes to House budget reconciliation bill provisions that phase out clean-energy tax credits, including easing start-date requirements, said Republican Senator John Cu...
Singleton Birch, an MLC company, has partnered with Centrica Energy Storage Ltd to produce hydrogen fuel for low-carbon lime at its North Lincolnshire operation. The UK Department for Energy Securi...
Exomad Green Breaks Ground on the World’s Largest Biochar Facility in Bolivia’s Guarayos Region
Exomad Green is proud to announce the groundbreaking of what is set to become the world’s largest biochar facility, located in the heart of the Guarayos region in Bolivia. This milestone represents...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.