Enhanced rock weathering is one of the most promising carbon dioxide removal techniques, but in practice, finding the right rock for the right soil has been a slow, painstaking process. Now, Carbon Drawdown Initiative says it has found very promising results in its research to slash testing times from 200+ days to just 48 hours.
In field and greenhouse trials, the team at Carbon Drawdown repeatedly saw that the same crushed rock applied to different soils can produce wildly different results — from strong carbon dioxide removal (CDR) effects to total flops. The main performance metric is the increase in alkalinity in water draining from the soil (leachate).
In their 2023–2024 greenhouse experiment with 400 pots, it typically took 200–250 days to detect whether a given rock–soil combination was working, and sometimes over a year to be sure. In real-world field trials, timelines are even longer. That means months of work, expensive monitoring, and, in some cases, spreading rock dust with zero climate benefit.
>> In Other News: Emissions Tech Venture Secures UK Grant for Southampton Pilot
The new approach is surprisingly simple. Instead of waiting months, the team puts 30 grams of rock, 80 g of soil, and 150 g of distilled water into an Erlenmeyer flask and places it on a laboratory shaker for 48 hours. Throughout the test, they measure electrical conductivity (EC), which turns out to be a reliable proxy for the alkalinity changes that signal CDR activity.
In just three weeks, the researchers “replayed” 30 different soil–rock pairings from their 700-day greenhouse trial and saw that short-term EC results closely matched long-term alkalinity outcomes.
“With this data, we would have known in advance that some rock/soil combinations would do little or no CDR,” the team notes. “In the greenhouse, it took over 200 days to tell the difference between flops and hits.”
In EW projects, being on the left side of the graph — where alkalinity doesn’t increase — means wasted time, money, and carbon accounting. By identifying poor-performing combinations before large-scale deployment, project developers could avoid unproductive work and improve climate impact.
While results can depend heavily on the specific type of rock dust used, the relationship between the long-term greenhouse data and short-term lab results was qualitatively stable for a given rock type.
The team admits they don’t fully understand why the method works so well. Hypotheses include:
Regardless of the exact mechanism, the method’s potential is clear: a few hundred grams of material and two days in the lab could guide decisions that previously took a year of work.
If further testing confirms this approach across a wide range of soils, it could become a standard pre-screening tool for EW projects, saving time and money, and ensuring that rock applications deliver meaningful carbon removal. Find the full report here (PDF).
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 💧 Ebb Partners with Saudi Water Authority to Transform Desalination Brine into Megaton-Scale CO₂ Removal 🏭 CO280 Successfully Completes Carbon Capture Field Pilot at a U.S. Pulp ...
Inside This Issue ⚗️ Air Liquide's Ammonia Cracker Unlocks Hydrogen Trade 🤝 BASF and ExxonMobil Join Forces to Advance Low - Emission Hydrogen Through Methane Pyrolysis Technology 🔥 Haffner Energy...
Inside This Issue ⛽ Texas Bypasses EPA, Unlocks Billion-Dollar CCS Rush 🏭 Proposed Blue Ammonia Plant In Ingleside Moves Forward After Heated Debate 💡 Hydrogen Could Be The Secret To Unlimited Ene...
James B. Hartwell Agrees to Join Canadian Biogas Investments Inc. as President and CEO
CALGARY, AB, Nov. 19, 2025 /CNW/ - Canadian Biogas Investments Inc. ("CBI"), a Calgary-based developer of dry fermentation anaerobic digestion projects, is pleased to announce that investment execu...
XCF Global Welcomes Growing Momentum for Sustainable Aviation Fuel Adoption in the United States
Policy Momentum: Federal and State Policy Alignment Is Accelerating Nationwide SAF Adoption Policy Momentum: Federal and state policy alignment is accelerating nationwide SAF adoption Market Oppor...
YOAKUM COUNTY, TEXAS Return Carbon, a leading project development and investment company in carbon markets, in collaboration with the Permian Energy Development Lab (PEDL), is proud to announce the...
BGN Announces Strategic MOU with XCF Global to produce and supply Sustainable Aviation Fuel
BGN and XCF Global Sign MOU to Develop Global Production, Distribution and Logistics Infrastructure for SAF and Other Renewable Fuels BGN joins International Air Transport Association (IATA) as st...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.