Published by Todd Bush on February 11, 2025
CarbonCure Technologies and MIT's Masic Lab have joined forces to push the boundaries of carbon dioxide (CO₂) injection and mineralization in concrete. This collaboration is set to deepen the industry’s understanding of how CO2 can be permanently embedded in concrete, helping to reduce the carbon footprint of one of the most emissions-intensive industries in the world.
>> In Other News: New Study Ranks the Most Efficient Carbon Removal Methods
Professor Admir Masic, from MIT’s Civil and Environmental Engineering department, is leading this initiative. His Masic Lab focuses on nanochemomechanics, a field that examines mineralization processes in construction materials, archaeological artifacts, and biological specimens.
The lab is part of MIT’s Concrete Sustainability Hub (CSHub), a research platform uniting industry, government, and academic leaders to drive sustainable infrastructure solutions.
This collaboration builds on CarbonCure’s decade-long research into CO2 utilization and mineralization in concrete. With extensive experience in this field, CarbonCure has developed innovative solutions that allow CO2 to be injected into fresh concrete, where it reacts with calcium ions to form stable calcium carbonate minerals.
The partnership aims to explore CO2 mineralization in concrete at multiple levels, from nanoscale analysis to industrial-scale production. By leveraging advanced in-situ and operando Raman spectroscopy and microscopy, the team will study the precise mechanisms driving mineralization.
Some key research areas include:
Concrete production is responsible for nearly 8% of global CO2 emissions. Technologies that embed CO2 into concrete could play a major role in decarbonizing the industry while maintaining or even improving material performance.
According to CarbonCure Chief Technology Officer Dean Forgeron, “CarbonCure aims to strengthen the industry’s scientific understanding of the intersection between mineralization and concrete properties, with a constant focus on enhancing the performance benefits of our technologies and innovating on behalf of our concrete producer partners.”
This research could help concrete producers optimize CO2 mineralization techniques, leading to stronger, more durable materials while reducing carbon emissions.
As governments and industries worldwide look for scalable, cost-effective carbon reduction solutions, the potential of CO2 mineralization in concrete is gaining traction.
By combining CarbonCure’s technological expertise with MIT’s advanced analytical capabilities, this research could pave the way for widespread adoption of lower-carbon concrete in construction projects.
This initiative is another step toward making carbon-neutral concrete a reality. With increased investment in CO2 capture and utilization, partnerships like this could redefine the future of sustainable building materials.
For more on this topic, check out CarbonCure Technologies and MIT's Concrete Sustainability Hub.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🚢 Clean Fuels, Clear Skies: How Maritime Shipping Is Turning to Hydrogen, Ammonia, and Carbon Capture 🧪 Carbon Capture Could Become Practical with Scalable, Affordable Materials ...
Inside This Issue 🗑️ The Next Big Thing in Carbon Capture? Trash. ⚡ Hydrogen Hope on the Chopping Block: How ARCHES and Other Blue-State Projects Got Caught in the Crossfire 📊 GEP Expands Carbon D...
Inside This Issue 🔧 America Bets Big on Blue Hydrogen: Inside the Engine Revolution Backed by Top Institutions 🤖 Bringing AI to Carbon Capture: How Imperial College is Revolutionising Plant Operat...
Carbon Capture Could Become Practical with Scalable, Affordable Materials
Researchers can pull carbon directly from the air using changes in humidity, now with inexpensive materials The Problem Atmospheric CO₂ continues to increase and, despite considerable worldwide e...
Frontier Signs Deal to Remove 100,000 Tonnes of Carbon Emissions from Garbage Incineration
Frontier, a carbon removal buyer coalition, announced that it has facilitated purchases of 100,000 tons of carbon removals to be generated between 2029 and 2030, through the abatement of emissions ...
ClearSign Technologies to Present at the LD Micro Main Event XVII
TULSA, Okla., April 4, 2025 /PRNewswire/ – ClearSign Technologies Corporation (Nasdaq: CLIR) ("ClearSign" or the "Company"), an emerging leader in industrial combustion and sensing technologies tha...
Zefiro Founder and CEO Appears on Orphan and Marginal Wells Panel in Fort Worth, Texas Led by JPMorganChase Head of Operational DecarbonizationThe annual event, which is hosted by the Neeley School...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.