Published by Todd Bush on November 21, 2023
BILBAO,Spain--(BUSINESS WIRE)--H2SITE has successfully validated the first ammonia cracker to produce high-purity hydrogen for onboard power generation using a PEM fuel cell. An integrated membrane reactor has been installed and operated on board of the BERTHA B supply ship, sailing the shores of the Gulf of Biscay.
Maritime transport is responsible for 2% of global greenhouse gas emissions, presenting significant potential for emission reduction by transitioning from hydrocarbons to green fuel options, such as hydrogen.
Ammonia cracking is gaining traction as a potential hydrogen carrier for onboard applications. It can be used directly in engines, or it can be cracked into hydrogen and used in fuel cells. Before hydrogen is used, purification is necessary, especially if traces of ammonia are present.
H2SITE’s membrane reactors make sure all the ammonia is transformed, while delivering a high purity hydrogen to the fuel cell in a single process step. During navigation, as part of the H2OCEAN project, H2SITE’s cracker has successfully powered the ship's auxiliary services. This achievement was made possible thanks to the collaboration with players active in the maritime decarbonization segment such as Zumaia Offshore, Erhardt Offshore, Ajusa, and TECNALIA, along with the participation of Enagas and ABS.
“Our innovative membrane reactor technology not only brings an improvement in system efficiency but also reduces the footprint of the installation. This is especially important in applications where space is limited, such as onboard a vessel.". to Jose Medrano, Technical Director atH2SITE. “We have focused our design efforts on minimizing the ammonia consumption, which will be key for the scale up to suit higher power output units ”.
This project is a steppingstone for H2SITE in the decarbonization of maritime transport.
H2SITE was established in 2020 and possesses exclusive technology for reactors and separators, facilitating the conversion of various feedstocks into hydrogen. These include ammonia, methanol, or synthetic gas, as well as the separation of hydrogen from gaseous mixtures in low concentrations for applications in salt caverns or geological hydrogen.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌊 Frontier Drops $31M on Ocean Antacids in Massive Carbon Bet 🏭 PCA Launches Carbon Capture and Storage Study Following ‘Promising’ Trial ✈️ Airbus and Air France Complete Inaugu...
Inside This Issue 🛢️ Northern Lights CCS Project Begins Operations with First CO2 Injection 🔋 Advent Technologies Receives Order from Global Energy Giant for Ion Pair HT- PEM Electrode Assemblies ...
Inside This Issue 🌎 Chevron Doubles Down on Carbon Capture with Massive Bayou Bend Hub 🌱 Manitoba Startup Pitches $5 Million Biochar Processing Plant to Ritchot Municipality 🏭 MATHESON to Build Ne...
New Marine Carbon Dioxide Removal Coalition Launches
The Marine Carbon Dioxide Removal Coalition (mCDR Coalition) launched on 22 August bringing together global leaders across companies, nonprofits and academic institutions to support the responsible...
Two New Swagelok® Components Deliver Safety and Efficiency to Hydrogen Refueling Stations
Ramp regulator and FK series check valve engineered specifically to address hydrogen-related challenges in a growing market SOLON, Ohio, Aug. 28, 2025 /PRNewswire/ -- To further enable the use of ...
Scientific Advisory Board brings decades of experience and a wealth of scientific prowess and geologic hydrogen heritage to advance the production of clean hydrogen August 28, 2025 07:00 ET | Sour...
HOUSTON -- Transition Industries LLC, a developer of world-scale, net-zero carbon emissions methanol and hydrogen facilities, has awarded Siemens Energy and Techint Engineering & Construction a...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.