decarbonfuse Icons/logo

Press Release

Looking at a Green Future: Insights from WEF’s Annual Meeting

Published by Todd Bush on January 28, 2025

The World Economic Forum Annual Meeting 2025: Decarbonization and the Energy Transition

The World Economic Forum’s Annual Meeting 2025 (January 20-24) has concluded in Davos, Switzerland, where global leaders tackled key issues, including decarbonization and the energy transition.

Regarding energy transition, delegates noted a shifting landscape in the energy industry as a result of a series of announcements from President Trump, including plans to boost U.S. energy output, accelerate LNG projects, and pressure the EU with tariff threats to increase gas purchases. Trump also announced the suspension of new federal offshore wind leasing, the U.S. withdrawal from the Paris Climate Agreement, and a call for Saudi Arabia and OPEC to lower oil prices.

>> In Other News: ExxonMobil and Trammo Sign HOA for Low-Carbon Ammonia Offtake, Advancing the World’s Largest Low-Carbon Hydrogen Project

While the U.S. exit from the Paris Climate Agreement is not expected to derail the global energy transition—largely driven by China and Europe—executives in Davos stressed the urgency for Europe to accelerate deregulation to attract investment and maintain competitiveness, according to Reuters.

Key Takeaways from Davos 2025

  • Optimism about the U.S. economy, despite Europe facing significant challenges.
  • A shift in focus from conflict to diplomacy, particularly regarding the Middle East.
  • Strong emphasis on emerging technologies like AI for climate action and healthcare.
  • Continued commitment to gender parity.
  • Debate on how Donald Trump’s return to office could reshape global policies.

Green Fuels in the Maritime Sector

As part of the World Economic Forum Annual Meeting, WEF examined how scalable maritime green fuels could enable shipping to reach net-zero emissions by 2050.

Green Methanol and Blue/Green Ammonia

One promising alternative to fossil-based maritime fuels is green methanol, which is currently produced at scale but typically relies on fossil fuels, emitting significant carbon. Two primary methods for producing green methanol include:

  1. Biomass-derived methanol: Methanol is synthesized from biomass feedstocks such as agricultural residues, energy crops, or municipal solid waste. The biomass is gasified to produce syngas (a mixture of carbon monoxide and hydrogen), which is catalytically converted into methanol.

  2. Carbon dioxide (CO2) and green hydrogen: This method combines captured CO2 (from industrial sources or directly from the air) with green hydrogen produced via electrolysis using renewable electricity. The CO2 and green hydrogen are catalytically converted into methanol.

While the second method has the additional benefit of capturing CO2 from the atmosphere, it faces hurdles such as CO2 instability and the excessive production of water during electrolysis, which complicates the process.

Similarly, blue and green ammonia present a promising alternative.

  • Green ammonia is produced by combining green hydrogen with nitrogen from the air, creating an effectively carbon-free fuel.
  • Blue ammonia is derived from natural gas, with carbon emissions captured, stored, or utilized, significantly reducing emissions.

Both alternatives offer higher energy density compared to conventional fuels, making them suitable for long-distance shipping. However, they face challenges, including the need for specialized infrastructure and the relatively early stage of green ammonia production for maritime use.

Catalyst Technologies for Green Fuels

To scale the production of green methanol or blue/green ammonia, it is crucial to optimize costly and complex production processes through the use of smart catalysts.

Beyond production, widespread adoption of these green fuels in the maritime sector will require:

  • Substantial investments in production facilities and distribution infrastructure.
  • Retrofitting or constructing vessels to support new fuels.
  • Clear regulatory frameworks and collaboration across the value chain.
  • Increased public awareness and acceptance.

If these fuels are successfully scaled and adopted, the shipping industry could achieve significant reductions in greenhouse gas emissions, mitigating the impacts of climate change and contributing to a sustainable future.

WEF Conclusion

According to WEF, scaling green methanol and blue/green ammonia could drive innovation, create new economic opportunities, and foster collaboration across industries and nations. By enabling the maritime sector to play a pivotal role in achieving global net-zero emissions goals, these fuels represent a transformative step toward combating climate change.

Icons/external Source

Subscribe to the newsletter

Icons/inbox check

Daily decarbonization data and news delivered to your inbox

Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.


Latest issues

View all issues

Company Announcements

Daily decarbonization data and news delivered to your inbox

Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.

Subscribe illustration