In a surprising turn of events, a team of scientists exploring the volcanic coast of Italy stumbled upon a new cyanobacteria strain they nicknamed Chonkus.
Discovered near the island of Vulcano, Chonkus has unique traits that make it a promising candidate for carbon capture — it grows rapidly when exposed to CO₂ and sinks to the ocean floor naturally.
The researchers, including team members from the Wyss Institute at Harvard University and Align to Innovate, believe that Chonkus could change the way we approach carbon sequestration. As Dr. Max Schubert noted, "It's basically built for industrial-scale decarbonization right out of the box."
The white spots in this microscope image of the "Chonkus" cyanobacteria likely represent carbon-dense granules produced by the algae, which may explain its rapid growth in carbon-rich environments and its tendency to sink quickly.
The discovery was made by a coalition of scientists led by Max Schubert, Ph.D., a former researcher at the Wyss Institute, now with Align to Innovate.
Driven by a hunch that some organisms thrive in carbon-rich environments, Schubert organized an expedition to Vulcano, where underwater volcanic vents provide natural carbon emissions.
His colleague, Braden Tierney, Ph.D., joined him to lead the expedition, securing funding from SeedLabs and enlisting support from several international research institutions.
In these carbon-loaded waters, the team found Chonkus, an algae with an unusual trait: it sinks. Unlike most algae, which float freely, Chonkus has a dense structure, causing it to fall to the ocean floor.
This unique trait could be a game-changer for scientists looking for ways to capture and store carbon. Schubert described its texture as "green peanut butter," highlighting its potential for use in biomanufacturing processes.
>> In Other News: Vortex Energy’s Collaboration with the University of Alberta Receives MITACS/NSERC Funding of $1.08 Million
Back in the lab, Schubert and Tierney replicated Chonkus's ideal conditions, cultivating it in a warm environment with ample light and a high CO₂ concentration.
The team identified two strains, with UTEX 3222 standing out. This strain, affectionately nicknamed “The Chonk,” grows into densely packed colonies, making it highly efficient for lab cultivation.
Chonkus is more than just a large algae; it carries an increased carbon content, thanks to the large granules it stores in its cells. Additionally, its natural ability to sink makes it easier to harvest and concentrate, a major advantage in algae production.
This feature could help reduce production costs by up to 30%, as it minimizes the need for drying and processing. Tierney remarked that "Many of the traits we observed in Chonkus aren't inherently useful in their natural environment, but they're very useful to humans."
The potential applications for Chonkus are vast. In addition to carbon sequestration, the algae could support sustainable production of omega-3 fatty acids, antioxidants, and algae-based supplements.
Its high-density growth and carbon-capture abilities make it ideal for biomanufacturing, potentially transforming the carbon capture industry.
Schubert and Tierney are optimistic about Chonkus’s future. To encourage further research, they made samples of UTEX 3222 available through the University of Texas’s Culture Collection of Algae, allowing scientists worldwide to study its unique properties.
Additionally, Tierney co-founded The Two Frontiers Project, a non-profit organization dedicated to discovering microbial species with beneficial traits for carbon capture and other ecological applications.
The promising capabilities of Chonkus come with a call for caution. Renowned Harvard and MIT professor George Church, a co-author of the study, emphasized the need for responsible handling of such potent biological tools.
He noted, "The traits inherent in naturally evolved strains like Chonkus can be game-changing, but it's critical to ‘build the seatbelts before you build the car.’"
Church’s team is actively working on containment strategies to ensure that Chonkus stays within controlled environments, preventing unintended ecological impacts.
With its natural ability to store carbon and ease of cultivation, Chonkus could soon play a central role in environmental efforts to mitigate carbon emissions.
For scientists, policymakers, and environmental advocates alike, this algae represents a new avenue for carbon capture — and perhaps a turning point in the fight against climate change.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🚢 Clean Fuels, Clear Skies: How Maritime Shipping Is Turning to Hydrogen, Ammonia, and Carbon Capture 🧪 Carbon Capture Could Become Practical with Scalable, Affordable Materials ...
Inside This Issue 🗑️ The Next Big Thing in Carbon Capture? Trash. ⚡ Hydrogen Hope on the Chopping Block: How ARCHES and Other Blue-State Projects Got Caught in the Crossfire 📊 GEP Expands Carbon D...
Inside This Issue 🔧 America Bets Big on Blue Hydrogen: Inside the Engine Revolution Backed by Top Institutions 🤖 Bringing AI to Carbon Capture: How Imperial College is Revolutionising Plant Operat...
Carbon Capture Could Become Practical with Scalable, Affordable Materials
Researchers can pull carbon directly from the air using changes in humidity, now with inexpensive materials The Problem Atmospheric CO₂ continues to increase and, despite considerable worldwide e...
Frontier Signs Deal to Remove 100,000 Tonnes of Carbon Emissions from Garbage Incineration
Frontier, a carbon removal buyer coalition, announced that it has facilitated purchases of 100,000 tons of carbon removals to be generated between 2029 and 2030, through the abatement of emissions ...
ClearSign Technologies to Present at the LD Micro Main Event XVII
TULSA, Okla., April 4, 2025 /PRNewswire/ – ClearSign Technologies Corporation (Nasdaq: CLIR) ("ClearSign" or the "Company"), an emerging leader in industrial combustion and sensing technologies tha...
Zefiro Founder and CEO Appears on Orphan and Marginal Wells Panel in Fort Worth, Texas Led by JPMorganChase Head of Operational DecarbonizationThe annual event, which is hosted by the Neeley School...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.