In a surprising turn of events, a team of scientists exploring the volcanic coast of Italy stumbled upon a new cyanobacteria strain they nicknamed Chonkus.
Discovered near the island of Vulcano, Chonkus has unique traits that make it a promising candidate for carbon capture — it grows rapidly when exposed to CO₂ and sinks to the ocean floor naturally.
The researchers, including team members from the Wyss Institute at Harvard University and Align to Innovate, believe that Chonkus could change the way we approach carbon sequestration. As Dr. Max Schubert noted, "It's basically built for industrial-scale decarbonization right out of the box."
The white spots in this microscope image of the "Chonkus" cyanobacteria likely represent carbon-dense granules produced by the algae, which may explain its rapid growth in carbon-rich environments and its tendency to sink quickly.
The discovery was made by a coalition of scientists led by Max Schubert, Ph.D., a former researcher at the Wyss Institute, now with Align to Innovate.
Driven by a hunch that some organisms thrive in carbon-rich environments, Schubert organized an expedition to Vulcano, where underwater volcanic vents provide natural carbon emissions.
His colleague, Braden Tierney, Ph.D., joined him to lead the expedition, securing funding from SeedLabs and enlisting support from several international research institutions.
In these carbon-loaded waters, the team found Chonkus, an algae with an unusual trait: it sinks. Unlike most algae, which float freely, Chonkus has a dense structure, causing it to fall to the ocean floor.
This unique trait could be a game-changer for scientists looking for ways to capture and store carbon. Schubert described its texture as "green peanut butter," highlighting its potential for use in biomanufacturing processes.
>> In Other News: Vortex Energy’s Collaboration with the University of Alberta Receives MITACS/NSERC Funding of $1.08 Million
Back in the lab, Schubert and Tierney replicated Chonkus's ideal conditions, cultivating it in a warm environment with ample light and a high CO₂ concentration.
The team identified two strains, with UTEX 3222 standing out. This strain, affectionately nicknamed “The Chonk,” grows into densely packed colonies, making it highly efficient for lab cultivation.
Chonkus is more than just a large algae; it carries an increased carbon content, thanks to the large granules it stores in its cells. Additionally, its natural ability to sink makes it easier to harvest and concentrate, a major advantage in algae production.
This feature could help reduce production costs by up to 30%, as it minimizes the need for drying and processing. Tierney remarked that "Many of the traits we observed in Chonkus aren't inherently useful in their natural environment, but they're very useful to humans."
The potential applications for Chonkus are vast. In addition to carbon sequestration, the algae could support sustainable production of omega-3 fatty acids, antioxidants, and algae-based supplements.
Its high-density growth and carbon-capture abilities make it ideal for biomanufacturing, potentially transforming the carbon capture industry.
Schubert and Tierney are optimistic about Chonkus’s future. To encourage further research, they made samples of UTEX 3222 available through the University of Texas’s Culture Collection of Algae, allowing scientists worldwide to study its unique properties.
Additionally, Tierney co-founded The Two Frontiers Project, a non-profit organization dedicated to discovering microbial species with beneficial traits for carbon capture and other ecological applications.
The promising capabilities of Chonkus come with a call for caution. Renowned Harvard and MIT professor George Church, a co-author of the study, emphasized the need for responsible handling of such potent biological tools.
He noted, "The traits inherent in naturally evolved strains like Chonkus can be game-changing, but it's critical to ‘build the seatbelts before you build the car.’"
Church’s team is actively working on containment strategies to ensure that Chonkus stays within controlled environments, preventing unintended ecological impacts.
With its natural ability to store carbon and ease of cultivation, Chonkus could soon play a central role in environmental efforts to mitigate carbon emissions.
For scientists, policymakers, and environmental advocates alike, this algae represents a new avenue for carbon capture — and perhaps a turning point in the fight against climate change.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🚀 Climeworks Raises USD 162M to Scale Up Technology 🛠️ DNV Advances Skylark to Enable Safe Scaling of CO2 Pipelines for Carbon Capture and Storage 🍁 Canada’s Rising Role in the G...
Inside This Issue 🏗️ Hyundai Unveils $6B Hydrogen-Powered Steel Mill in Louisiana, Aims to Position State as National Energy Leader 🤝 Deep Sky Inks Next DAC Deal in Germany with Greenlyte Carbon T...
Inside This Issue 🍁 Inside Canada’s Quiet Takeover of the Carbon Capture Industry ✈️ Phillips 66 to Supply SAF to British Airways in Calif 💧 HyVera Distributed Energy Launches Green Hydrogen-On-De...
Next-Gen Construction: 200 & 500kVA Hybrid Fuel-Cell Power USA - English
Elemental Energy launches its latest 200 & 500kVA hybrid hydrogen-BESS solution to optimise power supplies and eliminate combustion generators LONDON, July 3, 2025 /PRNewswire/ -- Elemental En...
Researchers in China have developed a groundbreaking technique that allows proton exchange membrane (PEM) electrolyzers to produce clean hydrogen from impure water, potentially reducing costs and e...
BILBAO, Spain--H2SITE has been awarded the EIC (European Innovation Council) Accelerator program for a project aimed at deploying a first-of-its-kind ammonia cracking unit capable of producing 1 to...
Trump's Budget Bill Boosts Fossil Fuels, Hits Renewable Energy
WASHINGTON - The budget bill the U.S. Senate passed on Tuesday and the House of Representatives is now debating for final approval would dampen development of wind and solar power, kill climate fun...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.