Published by Todd Bush on August 13, 2024
Dr. Haotian Wang discussed his research on nanomaterials and the importance of durability and scalability in scaling up technologies
SANTA CLARITA, Calif., Aug. 13, 2024 (GLOBE NEWSWIRE) -- NewHydrogen, Inc. (OTCMKTS), the developer of a breakthrough technology that uses clean energy and water to produce the world’s cheapest green hydrogen, today announced that in a recent podcast, the Company’s CEO Steve Hill spoke with Haotian Wang, Associate Professor in the Department of Chemical and Biomolecular Engineering at Rice University.
>> In Other News: 8 Rivers and Siemens Energy Partner on Development Program of Carbon Capture Power Generation
Dr. Wang discussed his work on electrochemical methods for carbon capture and conversion into high-value products, as well as the development of mobile catalytic materials for more efficient and cost-effective water splitting. Dr. Wang said, “There are challenges associated with hydrogen production, particularly the high cost of green hydrogen, which is currently around $5-6 per kilo.” He mentioned the Department of Energy's ambitious goal to reduce the cost of green hydrogen to $1 per kilo by 2030. The discussion also highlighted the need for technological advancements and supply chain collaborations to achieve this goal.
Regarding the challenges associated with using rare metals like iridium in the process of water electrolysis for hydrogen production, Dr. Wang said, “The scalability issue due to the limited global production of iridium necessitates finding alternatives that are more abundant and cost-effective, while still maintaining similar catalytic performance and durability.” He also mentioned another type of water electrolyzer that uses low-cost catalyst materials but has different stability issues. The focus of his research is to resolve these issues and make the process more commercially viable.
They discussed the challenges of scaling innovative ideas from the lab to industry. Dr. Wang acknowledged a gap between academic research and industrial needs, and suggested that more collaboration between universities and industry could help bridge this gap. Dr. Wang said, “In order for electrolysis to play a significant role in decarbonizing chemicals and fuels in the future, we cannot overemphasize the importance of durability and scalability in scaling up technologies.”
Dr. Haotian Wang received his PhD degree in the Department of Applied Physics at Stanford University in 2016, after which he received the Rowland Fellowship and began his independent research career at Harvard as a principal investigator. He was awarded the Sloan Fellow, Packard Fellow, CIFAR Azrieli Global Scholar, Forbes 30 Under 30, highly cited researchers, etc. He serves as the associate editor of Nano Letters. He is the co-founder and chief scientist of Solidec, a carbon capture and chemicals and fuels production company. His research group has been focused on developing novel nanomaterials for energy and environmental applications, including energy storage, chemical/fuel generation, and water treatment. Dr. Wang is listed as Google Scholar at https://scholar.google.com/citations?user=dC4j6AMAAAAJ&hl=en.
Watch the full discussion on the NewHydrogen Podcast featuring Dr. Wang at https://newhydrogen.com/videos/ceo-podcast/dr-haotian-wang-rice-university.
For more information about NewHydrogen, please visit https://newhydrogen.com/.
NewHydrogen is developing ThermoLoop™ – a breakthrough technology that uses water and heat rather than electricity to produce the world’s lowest cost green hydrogen. Hydrogen is the cleanest and most abundant element in the universe, and we can’t live without it. Hydrogen is the key ingredient in making fertilizers needed to grow food for the world. It is also used for transportation, refining oil and making steel, glass, pharmaceuticals and more. Nearly all the hydrogen today is made from hydrocarbons like coal, oil, and natural gas, which are dirty and limited resources. Water, on the other hand, is an infinite and renewable worldwide resource.
Currently, the most common method of making green hydrogen is to split water into oxygen and hydrogen with an electrolyzer using green electricity produced from solar or wind. However, green electricity is and always will be very expensive. It currently accounts for 73% of the cost of green hydrogen. By using heat directly, we can skip the expensive process of making electricity, and fundamentally lower the cost of green hydrogen. Inexpensive heat can be obtained from concentrated solar, geothermal, nuclear reactors and industrial waste heat for use in our novel low-cost thermochemical water splitting process. Working with a world-class research team at UC Santa Barbara, our goal is to help usher in the green hydrogen economy that Goldman Sachs estimated to have a future market value of $12 trillion.
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Wishing everyone a restful holiday season.🎄🎅🎁 Inside this Issue ✈️ Cathay Goes Global With SAF in Three-Continent Fuel Deal 🧪 Proton Ventures Partners With Barents Blue For Realization Of The Bar...
Inside This Issue 🚛 Alberta's Shared Truck Model Could Crack Hydrogen Adoption ✈️ ZeroAvia Completes Financing Round 🌾 Frontier And NULIFE Scale New Biowaste Carbon Removal Approach 🔥 WAGABOX® Of ...
Inside This Issue 🌎 North America's Carbon Removal Year in Review: The Deals, Policies, and Milestones That Shaped 2025 🚢 Hapag-Lloyd And North Sea Container Line Win ZEMBA Second E-Fuel Tender 🪨 ...
ClimeFi Announces New 85,000 Tonne Procurement Round
In its latest procurement round, ClimeFi has enabled more than US$18m in durable carbon removal purchases across eight removal pathways: Biochar, Bioenergy with Carbon Capture and Storage (BECCS), ...
Vallourec, a world leader in premium seamless tubular solutions, and Geostock, a global specialist in underground storage of energy, have signed a Memorandum of Understanding (MoU) to strengthen th...
CMA CGM, DHL Step Up Ocean Freight Decarbonization with Biofuel Deal
DHL Global Forwarding and shipping group CMA CGM have agreed to jointly use 8,990 metric tons of second-generation biofuel to reduce emissions from ocean freight. The initiative is expected to cut...
Next-Generation Gas Turbine Control System For Thermal Power Plants Completes Functional Testing
Integration of Mitsubishi Power's control technology with Mitsubishi Electric's high-speed data processing technology Supports rapid load adjustments and diverse fuels including hydrogen Tokyo, ...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.