In recent years, photocatalytic water splitting has emerged as a promising approach for converting solar energy into storable hydrogen fuel, demonstrating significant potential for applications in environmental remediation and energy conversion. However, current research in photocatalytic technology predominantly focuses on material design, overlooking the optimisation of photocatalytic reaction systems.
In response to this, researchers have developed a novel immobilised photothermal-photocatalytic integrated system.
“Specifically, conventional photocatalytic water splitting typically involves uniformly dispersing photocatalysts in the liquid phase, forming a solid-liquid-gas triphase reaction system,” explained Professor Maochang Liu, who led the research.
“This triphase system inherently suffers from low solar energy utilisation efficiency and slow mass transfer processes.”
>> In Other News: North America Climate Summit (NACS) 2025: 23-25 September in New York City
Photocatalytic water splitting is a process that utilises light energy to split water (H₂O) into hydrogen (H₂) and oxygen (O₂), providing a clean method for producing hydrogen.
This reaction relies on a photocatalyst, typically a semiconductor material such as titanium dioxide (TiO₂), which absorbs light – usually sunlight – and generates excited electrons and holes.
When the photocatalyst absorbs photons with energy equal to or greater than its band gap, electrons are promoted from the valence band to the conduction band, leaving behind positive holes. These charge carriers then drive redox reactions: the excited electrons reduce protons (H⁺) to form hydrogen gas, while the holes oxidise water molecules to release oxygen.
Efficient water splitting requires careful design of the photocatalyst to ensure good light absorption, charge separation, and surface reaction activity.
Although promising, challenges such as low efficiency, catalyst stability, and limited light absorption still need to be addressed for large-scale applications.
Typically, conventional photocatalytic reactions primarily rely on ultraviolet and visible light spectra, failing to effectively use near-infrared light, which constitutes over 50% of the solar spectrum.
“The development of novel reaction systems with full-spectrum responsiveness has emerged as a critical breakthrough for enhancing photocatalytic efficiency,” said Liu.
Now, the researchers have successfully developed an immobilised photothermal-photocatalytic water splitting system.
This innovative system combines a photothermal substrate with high-performance photocatalysts, enabling a synergistic process of liquid water evaporation and steam-phase water splitting for hydrogen production under light illumination without requiring additional energy input.
A CdS/CoFe₂O₄ (CCF) p-n heterojunction photocatalyst is fabricated by the calcination method, which facilitates consistent spatial transmission and efficient separation of photogenerated carriers.
The construction of the system involved utilising annealed melamine sponge (AMS) as a photothermal substrate, transforming the solid-liquid-gas tri-phase system into a more efficient gas-solid bi-phase configuration.
The optimised CCF/AMS photocatalytic water splitting system demonstrates a remarkable hydrogen evolution rate of 254.1 µmol h–1, representing a significant leap forward compared to the traditional triphase system.
The system, through innovative material design and reaction system construction, provides crucial insights and practical guidance for enhancing the efficiency of photocatalytic water splitting.
Liu concluded: “This gas-solid biphase system can enhance solar energy utilisation efficiency, elevate the overall reaction temperature, and reduce gas transport resistance at the catalytic interface, thereby significantly improving the efficiency of photocatalytic water splitting.”
Would you like me to also build a list of all linked companies/organizations at the end (like a quick reference block), so you can double-check them easily?
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue 🌽 Nebraska's 3-Plant Ethanol CCS Gamble Pays Off Big 🧊 New Evaporative Crystallizer Design Accelerates Direct-Air Carbon Capture ✈️ From SAF to Solar: DHL’s Bold Steps Toward Net...
Happy New Year from Decarbonfuse! As we wrap up 2025, we want to thank you for being part of the growing Decarbonfuse community. Your engagement and feedback have helped make this platform a trust...
Inside This Issue 💸 $213 Per Tonne: Inside the Latest Multi-Pathway CDR Deal 🏛️ Clean Energy Technologies Affiliate Vermont Renewable Gas Advances Regulatory Review 💧 Fusion Fuel’s BrightHy Soluti...
CES 2026 - Doosan Presents Comprehensive Energy Solutions for the AI Era
Doosan Group, through its energy subsidiaries Doosan Enerbility and HyAxiom, will unveil a portfolio of next-generation energy solutions designed to meet the massive power demands of the AI era. Th...
From Thin Air to Fighter Jets: A New American Way to Make Carbon Fiber
Mars Materials, Inc. and North Carolina State University successfully validated a CO2-derived precursor for carbon fiber manufacturing. Mars Materials, Inc. PBC ("MM" or the "Company"), a public b...
Greentown Labs Announces Go Make 2026 With Shell and Technip Energies
Greentown Labs, the world's largest climatetech and energy incubator, announced Greentown Go Make 2026, an open-innovation program with Shell Catalysts & Technologies and Technip Energies focus...
SoCalGas Connects Its First Landfill-Based Renewable Natural Gas Project to Its Pipeline System
Southern California Gas Company (SoCalGas) is now accepting renewable natural gas (RNG) produced at the new WM Simi Valley RNG Facility into its pipeline system, marking the first time SoCalGas has...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.