In recent years, photocatalytic water splitting has emerged as a promising approach for converting solar energy into storable hydrogen fuel, demonstrating significant potential for applications in environmental remediation and energy conversion. However, current research in photocatalytic technology predominantly focuses on material design, overlooking the optimisation of photocatalytic reaction systems.
In response to this, researchers have developed a novel immobilised photothermal-photocatalytic integrated system.
“Specifically, conventional photocatalytic water splitting typically involves uniformly dispersing photocatalysts in the liquid phase, forming a solid-liquid-gas triphase reaction system,” explained Professor Maochang Liu, who led the research.
“This triphase system inherently suffers from low solar energy utilisation efficiency and slow mass transfer processes.”
>> In Other News: North America Climate Summit (NACS) 2025: 23-25 September in New York City
Photocatalytic water splitting is a process that utilises light energy to split water (H₂O) into hydrogen (H₂) and oxygen (O₂), providing a clean method for producing hydrogen.
This reaction relies on a photocatalyst, typically a semiconductor material such as titanium dioxide (TiO₂), which absorbs light – usually sunlight – and generates excited electrons and holes.
When the photocatalyst absorbs photons with energy equal to or greater than its band gap, electrons are promoted from the valence band to the conduction band, leaving behind positive holes. These charge carriers then drive redox reactions: the excited electrons reduce protons (H⁺) to form hydrogen gas, while the holes oxidise water molecules to release oxygen.
Efficient water splitting requires careful design of the photocatalyst to ensure good light absorption, charge separation, and surface reaction activity.
Although promising, challenges such as low efficiency, catalyst stability, and limited light absorption still need to be addressed for large-scale applications.
Typically, conventional photocatalytic reactions primarily rely on ultraviolet and visible light spectra, failing to effectively use near-infrared light, which constitutes over 50% of the solar spectrum.
“The development of novel reaction systems with full-spectrum responsiveness has emerged as a critical breakthrough for enhancing photocatalytic efficiency,” said Liu.
Now, the researchers have successfully developed an immobilised photothermal-photocatalytic water splitting system.
This innovative system combines a photothermal substrate with high-performance photocatalysts, enabling a synergistic process of liquid water evaporation and steam-phase water splitting for hydrogen production under light illumination without requiring additional energy input.
A CdS/CoFe₂O₄ (CCF) p-n heterojunction photocatalyst is fabricated by the calcination method, which facilitates consistent spatial transmission and efficient separation of photogenerated carriers.
The construction of the system involved utilising annealed melamine sponge (AMS) as a photothermal substrate, transforming the solid-liquid-gas tri-phase system into a more efficient gas-solid bi-phase configuration.
The optimised CCF/AMS photocatalytic water splitting system demonstrates a remarkable hydrogen evolution rate of 254.1 µmol h–1, representing a significant leap forward compared to the traditional triphase system.
The system, through innovative material design and reaction system construction, provides crucial insights and practical guidance for enhancing the efficiency of photocatalytic water splitting.
Liu concluded: “This gas-solid biphase system can enhance solar energy utilisation efficiency, elevate the overall reaction temperature, and reduce gas transport resistance at the catalytic interface, thereby significantly improving the efficiency of photocatalytic water splitting.”
Would you like me to also build a list of all linked companies/organizations at the end (like a quick reference block), so you can double-check them easily?
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.
Inside This Issue ⚡ DOE Floats New Cuts To Hundreds Of Clean Energy Grants ⛏️ HyTerra Limited Announces Positive Results From McCoy 1 Well 🍁 As Policy Changed, CarbonCapture Moved Its Pilot Projec...
Inside This Issue 🚢 CF Industries, Trafigura, and Envalior Announce Shipment of Certified Low-Carbon Ammonia 🥤 Skytree Validates DAC System to Generate Pure, Beverage-Grade Liquid CO₂ On-Site 💻 Su...
Inside This Issue 💰 Louisiana's $3.5B Carbon Capture Surge Sets National Decarbonization Blueprint 🌍 UN Climate Summit To Feature First-Ever Carbon Removal Pavilion At COP30 🚛 AtmosClear Selects E...
Facility will bring an estimated $500 million investment to the region WINNIPEG, MB, Oct. 9, 2025 /PRNewswire/ -- Deep Sky, the world's first tech-agnostic carbon removal project developer, has se...
Policy Reversals In The US Will Only Have A Marginal Impact On The Global Energy Transition – Report
08 October 2025, Høvik, Norway – The global shift towards cleaner energy remains robust even though the pace of the energy transition in the United States has slowed sharply due to recent policy re...
Brossard, Quebec, October 9, 2025 – Charbone Hydrogen Corporation (TSXV: CH; OTCQB: CHHYF; FSE: K47) ("CHARBONE" or the "Company"), a company dedicated to building North America’s first clean Ultra...
Vancouver, British Columbia--(Newsfile Corp. - October 9, 2025) - Q Precious & Battery Metals Corp. (CSE: QMET) (OTC Pink: BTKRF) (FSE: 0NB) ("QMET" or the "Company") is pleased to announce tha...
Follow the money flow of climate, technology, and energy investments to uncover new opportunities and jobs.